.
AI_133px.jpg
ai
Artificial Intelligence
.
biotech
biotech
Biotechnology and Synthetic Biology
.
cryptography
crypto
Cryptography
.
neuroscience
neuroscience
Neuroscience
.
nuclear
nuclear
Nuclear Technologies
.
robotics
robotics
Robotics
.
semiconductor
semiconductors
Semiconductors

KEY TAKEAWAYS

•  Materials science is a foundational technology that underlies advances in many fields, including robotics, space, energy, and synthetic biology. 

•  Materials science will exploit AI as another promising tool to predict new materials with tailored properties and identify novel uses for known materials.

•  The structure of funding in materials science does not effectively enable transition from innovation to implementation. Materials-based technology that has been thoroughly tested at the bench scale may be too mature to qualify for basic research funding (because the high-level fundamental science is understood) but not mature enough to be directly commercialized by companies.

Icons_card_Nano.png

Overview

Broadly speaking, materials science and engineering research focuses on four major areas. The first is characterizing the properties of materials to derive a material structure-property relationship. The second is modeling materials, which involves predicting material properties based on atomistic principles. The third is establishing synthesis methods of materials to attain specific properties as predicted. The fourth area is manufacturing and processing materials with well-characterized properties in sufficient quantities for practical applications.

An aspiration, which remains a long way off, is to be able to create materials on demand by specification—put in a request for a material with properties X, Y and Z, and a 3-D printer produces it for you.

KEY DEVELOPMENTS
 
  • Biomedical applications include wearable electronic devices, or “e-skin,” that can sense stimuli and encode these stimuli into processable electrical signals. 
  • Novel, recyclable plastics are easier to break down.
  • More efficient, powerful, and long-lasting batteries are crucial for solar and wind energy storage and for transportation. 
  • Additive manufacturing, continued scale-up of 3-D printing, including with novel applications such as printing with multiple materials at once, and smaller feature sizes are on tap.
  • Nanotechnology studies how properties of nanoscale materials—including their electronic, optical, magnetic, thermal, and mechanical properties—differ from the same materials in bulk form.
  • Quantum dots are spherical nanocrystals that emit light and are newly used in television displays. They are a model example of variable material properties due to scale as their optoelectronic properties differ from those of the same bulk material. They can be used in medical imaging, solar cells, chemical and biological detection sensors, and anticounterfeiting measures.
  • Drug delivery via injection can be precisely controlled over the course of months by embedding the drug within a nanoengineered material. The efficacy of insulin, for example, can be improved through this research.
  • Vaccine stabilization by lipid nanoparticle vectors, notably of mRNA vaccines, can protect payloads from degradation. 
  • 2-D semiconductors, including graphene, carbon nanotubes, and single-layer chalcogenides, could be embedded within high-tech electronic devices to increase energy efficiency.

 

Over the Horizon

  • Low-carbon steel and cement production needs further research to make it economically competitive with traditional methods of production, which are extremely carbon-intensive, contributing to 8 percent of CO2 emissions.
  • Toxicity and environmental issues may stem from the small size of nanoparticles. Because engineered nanoparticles are, by definition, new to the natural environment, they pose unknown dangers to humans and the environment. Policy will be particularly important in shaping responsible end-of-life solutions for products incorporating nanomaterials.
  • Support for an advanced workforce should address the significant portion of academic researchers who are PhD students and professors who have immigrated to the United States to seek better educational and research opportunities. It is crucial to establish a better pathway to permanent residence upon graduation for doctoral students on student visas so that the United States does not lose highly trained workers. The United States and universities invest heavily in the education of STEM graduate students, and it would be wise to find a path to allow these scientists and engineers to work and live in the country permanently.
  • Regarding foreign collaboration and competition, policy ambiguity can inadvertently hinder innovation by creating obstacles for non-US researchers wishing to contribute to work in the United States and by deterring international collaborations. Clarification of these policies is urgently needed, particularly distinguishing between fundamental research and export-controlled research. 

 

Report Preview: Materials Science

Faculty Council Advisor

zhenan-bao_profilephoto.jpg
Zhenan Bao
Author
Zhenan Bao

Zhenan Bao is the K. K. Lee Professor in Chemical Engineering and Professor, by courtesy, of chemistry and materials science and engineering at Stanford University. She has close to seven hundred referred publications and more than eighty US patents. Her current research focuses on organic electronics, including skin-inspired materials, dynamic energy storage, and recyclable, re-processable materials. She received her PhD in chemistry from the University of Chicago.

View Bio
zhenan-bao_profilephoto.jpg
Zhenan Bao

Zhenan Bao is the K. K. Lee Professor in Chemical Engineering and Professor, by courtesy, of chemistry and materials science and engineering at Stanford University. She has close to seven hundred referred publications and more than eighty US patents. Her current research focuses on organic electronics, including skin-inspired materials, dynamic energy storage, and recyclable, re-processable materials. She received her PhD in chemistry from the University of Chicago.

Access the Complete Report

Read the complete report.

Explore

Date Range
CONTENT TYPE

Select Content Type

  • News
  • Article
  • Videos
  • Podcasts
  • Events
AUTHORS

Select Author

  • Condoleezza Rice
  • John Taylor
  • Jennifer Widom
  • Amy Zegart
  • Herbert Lin
  • Hon. Jerry McNerney
  • Hon. Robert Gates
  • Hon. Steven Chu
  • Hon. Susan M. Gordon
  • John Hennessy
  • Lloyd B. Minor
  • Mary Meeker
  • Peter Scher
  • Thomas M. Siebel
  • Zhenan Bao
  • Dan Boneh
  • Yi Cui
  • Simone D’Amico
  • Drew Endy
  • Siegfried Glenzer
  • Mark A. Horowitz
  • Fei-Fei Li
  • Allison Okamura
  • Kang Shen
  • Eric Schmidt
  • Steven Koonin
  • Sally Benson
  • Norbert Holtkamp
  • Martin Giles
FOCUS AREAS

Materials Science

  • Artificial Intelligence
  • Biotechnology and Synthetic Biology
  • Sustainable Energy Technologies
  • Cryptography
  • Materials Science
  • Neuroscience
  • Nuclear Technologies
  • Robotics
  • Semiconductors
  • Space
  • Technology Test Page
  • Lasers
  • Artificial Intelligence
  • Biotechnology and Synthetic Biology
  • Cryptography
  • Materials Science
  • Neuroscience
  • Robotics
  • Semiconductors
  • Sustainable Energy Technologies
  • Space
Date (field_date)
Read More
The Interconnect Logo
News
Books
CFR and the Stanford Emerging Technology Review Launch New Podcast Series on Frontier Technologies

Frontier technologies are transforming international relations and the U.S. economy. As a result, more bridges between science and engineering labs, Washington, DC, and the world of business are needed. The Hoover Institution and Stanford University’s School…

February 12, 2025
Read More
SETR in DC | Feb. 25, 2025
Events
Books
The Stanford Emerging Technology Review 2025: Frontier Tech For A New Geopolitical Era

The Hoover Institution and the School of Engineering at Stanford University invite you to a panel discussion for the launch of the Stanford Emerging Technology Review 2025 report in Washington, DC.

Read More
Hoover Institution fellow Drew Endy testifies before the US-China Economic and Security Review Commission at a hearing on "Made in China 2025—Who Is Winning?"
News
Books
Drew Endy: Made In China 2025—Who Is Winning?

Hoover Institution fellow Drew Endy testifies before the US-China Economic and Security Review Commission at a hearing on "Made in China 2025—Who Is Winning?"

February 06, 2025 by Drew Endy
Read More
Bio-Strategies and Leadership Holds Inaugural Congressional Fellowship Program on Biotechnology Strategy
Events
Books
Bio-Strategies and Leadership Holds Inaugural Congressional Fellowship Program on Biotechnology Strategy

Drew Endy, a Hoover science fellow and senior fellow and Martin Family University Fellow in Undergraduate Education (Bioengineering) at Stanford University, convened nearly two dozen Hoover and Stanford experts, policymakers, and business leaders earlier this…

October 18, 2024
Read More
Tech Track II 2024
Events
Books
Government Officials, Hoover Fellows, and Silicon Valley Leaders Discuss Cooperation at Sixth Annual Tech Track II Symposium

Fifty US government officials, scholars from the Hoover Institution, Stanford University scientists and engineers, technology experts, venture capitalists, and business leaders convened at the Sixth Annual Tech Track II Symposium hosted by the Hoover…

December 16, 2024
Read More
Drone
Article
Books
Technology Applications By Policy Area

This chapter explores applications from each of the ten technology fields described in the report as they may relate to five important policy themes: economic growth, national security, environmental and energy sustainability, health and medicine, and civil…

February 07, 2025
Read More
Globe
Article
Books
Cross-Cutting Themes

One of the most important and unusual hallmarks of this moment is convergence: emerging technologies are intersecting and interacting in a host of ways, with important implications for policy. This chapter identifies themes and commonalities that cut across…

February 07, 2025
Read More
Stanford
Article
Books
Executive Summary

This report offers an easy-to-use reference tool that harnesses the expertise of Stanford University’s leading science and engineering faculty in ten major technological areas: artificial intelligence, biotechnology and synthetic biology, cryptography, lasers…

February 07, 2025
Read More
Binary
Article
Books
Foreword

Emerging technologies are transforming societies, economies, and geopolitics. Never have we experienced the convergence of so many technologies with the potential to change so much, so fast, and at such high stakes. This report is intended to help readers…

Read More
Marc Andreessen: It’s Morning Again In America
Videos
Books
Marc Andreessen: It’s Morning Again In America

The interview also delves into the technological and political evolution of Silicon Valley and Andreessen’s own shifting political affiliations from left to right, along with his vision for leveraging technology to drive societal progress, the role of…

January 14, 2025

You May Also Like

.
Technology istock
The Care and Feeding of Transformative Tech
.
Drone
Technology Applications By Policy Area
.
Globe
Cross-Cutting Themes
overlay image