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Overview
Materials are everywhere, from macro features that 
are visible to the naked eye to microscopic features 
thousands of times smaller than the diameter of a 
single human hair. They shape the objects of every-
day life and give rise to new possibilities. Materials 
science cuts across technological areas, contributing 
to everything from the development of stronger and 
lighter materials for aircraft to more efficient and 
less heavy solar cells, better semiconductors, bio-
compatible materials for medical implants, more 
stable electrodes for batteries, and easily manufac-
tured and recyclable plastics.

The goal of materials science is to understand how 
the structure of a material influences its properties 
and how processing the material can change its 
structure and therefore its performance. This knowl-
edge can then be used to design new materials with 
desirable properties for specific uses. The ultimate 
aspiration, which remains a long way off, is to be able 

KEY TAKEAWAYS

Materials science is a foundational technology 
that underlies advances in many other fields, 
including robotics, space, energy, and synthetic 
biology. 

Materials science will exploit AI as another prom-
ising tool to predict new materials with new prop-
erties and identify novel uses for known materials.

The structure of funding in materials science does 
not effectively enable transition from innovation 
to implementation. Materials-based technology 
that has been thoroughly tested at the bench 
scale may be too mature to qualify for basic 
research funding (because the high-level basic 
science is understood) but not mature enough to 
be directly commercialized by companies.
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to create materials on demand by specification— 
put in a request for a material with properties X, Y, 
and Z, and a 3-D printer produces it for you.

Broadly speaking, materials science and engineering 
research focuses on four major areas. The first is char-
acterizing the properties of materials. The second is 
modeling materials, which involves predicting mate-
rial properties based on atomic principles. The third 
is synthesizing materials with precise control to verify 
whether their properties are as predicted. The fourth 
area is manufacturing and processing materials with 
well-characterized properties in sufficient quantities 
for practical applications.

Basics of Materials Science

All materials are composed of atoms. The periodic 
table of the elements (figure 4.1) lists all the known 
types of atoms. Certain atoms can be combined into 
molecules that have vastly different properties than 
the atoms alone. For example, table salt consists of 
sodium and chlorine, which are elements. Sodium 

burns on contact with water, chlorine is a poisonous 
gas, and yet the table salt we consume every day is 
a completely different substance.

There are two important points to note about the 
periodic table. First, there are a lot of elements—
ninety-two naturally occurring ones and twenty-six 
that can be observed only in laboratory conditions. 
That’s a lot of building blocks from which different 
materials and molecules can be synthesized, and 
in fact, an astronomically large number of different 
compounds are possible. The challenge for materi-
als science is to sift through this vast array of possi-
bilities to find the ones that are useful.

The second important point is that the elements in 
the periodic table are lined up in a certain order. 
Elements in the same column have properties that 
are often similar in key ways. This means that insights 
developed through experimentation or calculation 
on one element can be transferred, with modifica-
tions, to another element above or below it in the 
periodic table.
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FIGURE 4.1 Periodic table of the elements

Source: Wikimedia Commons, CC BY-SA 4.0
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Atoms can be arranged spatially in various ways. A 
crystal, for example, is the result of arranging atoms 
in a periodically repeating lattice. The silicon wafer 
at the heart of the semiconductor industry is one 
such crystal; more precisely, it’s a slice of a single 
silicon crystal. 

Molecules, in turn, can be linked together into struc-
tures called macromolecules (see figure 4.2). These 
can occur naturally, such as proteins, DNAs, and 
cellulose, or can be synthesized artificially, resulting 
in polymers/plastics, for example. Plastics are par-
ticularly useful because the long chains of macro-
molecules are often more flexible. Research on new 
macromolecular structures can be used to develop 
plastic materials that are easier to recycle or that hold 
advantageous mechanical properties while weighing 
less than metals. 

Key Developments
Present-Day Applications 

Some interesting applications from studying materi-
als science include:

Biomedical applications Wearable electronic devices 
made from flexible materials conform to skin or tis-
sues and serve specific sensing or actuating func-
tions. More specifically, wearable electronic devices 
or “e-skin” can sense external stimuli such as tem-
perature and pressure and encode these stimuli into 
electrical signals.1 For example, a “smart bandage” 
with integrated sensors and simulators can acceler-
ate healing of chronic wounds by 25 percent.2 

Novel and recyclable plastics Researchers are 
developing new sustainable methods to couple 
molecules into polymers for deconstructable plas-
tics that are easier to recycle.3 New electrically con-
ductive polymers are also a focus of study. Electrical 
conductivity in flexible materials such as plastics can 
be achieved by inserting specific bonds between 
individual atoms that make up the material back-
bone. This allows for the fabrication of flexible elec-
tronic devices such as wearable sensors and foldable 
screens for mobile devices. 

Energy materials Materials design and process-
ing is integral to decarbonization efforts through the 
electrification of transportation and industry. Some 
challenges persist, however, including storing energy 
from intermittent energy sources, such as solar and 
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FIGURE 4.2 The basic layout of materials science
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wind, in batteries. Therefore, designing batteries 
with materials and architectures that enable quick 
recharging and long stability while reducing costs 
will be crucial. Important discoveries in engineer-
ing battery electrode materials have been made.4 
Studying the electrolyte-electrode interface in bat-
teries has also led to higher performing and more 
stable electrolytes in batteries.5

Additive Manufacturing

One promising advance in materials processing over 
the past fifteen years is additive manufacturing, or 
3-D printing. A novel method termed continuous 
liquid interface production (CLIP) has been estab-
lished that uses directed ultraviolet light to pattern 
structures from a polymer resin.6

This technology has been used to make customized 
football helmet liners,7 and a number of companies 
have sprung up to commercialize and scale up addi-
tive manufacturing both by producing stand-alone 
products and by collaborating with multinational 
companies. More recent active research in 3-D 
printing includes scaling down 3-D printable feature 
sizes and exploring methods to 3-D print with con-
ductive materials and artifacts using multiple mate-
rials at once. 

Nanotechnology

Nanotechnology is a large and growing subfield 
of materials science. Size has a profound impact on 
the properties of a material. Figure 4.3 shows dif-
ferent length scales compared to a water molecule 
(which is below a nanometer), a human hair (roughly 

The ultimate aspiration . . . is to be able to create 
materials on demand by specification.
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105 nanometers), and a tennis ball (at 108 nanometers). 
A structure is typically referred to as nanoscale if at 
least one dimension is in the 1–100 nanometer range. 

In the past twenty years, nanoscience and nanotech-
nology have attracted enormous interest, for two 
reasons. First, many significant biological organisms 
(such as viruses and proteins) are nanoscale in size. 
Second, it turns out that the properties of nanoscale 
materials—including their electronic, optical, mag-
netic, thermal, and mechanical properties—are 
often very different from the same material in bulk 
form.8 Materials that are smaller than about 100 
nanometers in one dimension, two dimensions, or 
in all dimensions are called nanosheets, nanowires, 
and nanoparticles, respectively. 

Quantum dots—for which the Nobel Prize in 
Chemistry was awarded in 2023—have garnered 
public attention through their use in televisions. 
Quantum dots are metallic, carbonaceous, or semi-
conductor spherical nanocrystals that emit bright 
monochromatic light in response to excitation by a 
light source with a higher energy, such as blue light 
from the back panel in a display.9 Quantum dots are 
a model example of variable material properties due 
to scale as their optoelectronic properties differ from 
those of the same bulk material. The diameter of 
quantum dots shifts the color of light that they emit, 
with larger quantum dots emitting longer wave-
lengths. This allows for tunable light emission based 
on the desired application.

Some current applications of quantum dots include:

Medical imaging Quantum dots are being used 
to improve the contrast of biomedical imaging, for 
example, as in fluorescent markers to allow selective 
labeling of biological structures in vitro and in vivo.10 
Additionally, biocompatible nanomaterials can be 
employed as optical probes to sense mechanical 
forces and electrical fields in biological organisms, 
thus circumventing specialized and bulky equip-
ment, opening the possibility of new experiments.11

Solar cells Quantum dots can improve the effi-
ciency of solar cells. Their ability to absorb different 
frequencies of light means they can potentially cap-
ture more of the solar spectrum, boosting the per-
formance of solar panels.12

Sensors Quantum dots and plasmonic nanoparti-
cles can be used in sensors for detecting chemicals 
and biological substances.13

Anticounterfeiting Quantum dots can be embed-
ded in labels to defend against counterfeiting14.

Some examples of applications of other nanomate-
rials include:

Pharmaceutical delivery An injectable polymer- 
nanoparticle hydrogel, for example, was developed 
so the delivery of drugs, proteins, and cells can be 
precisely controlled, enabling months-long release 
of entrapped cargo.15 The efficacy of insulin adminis-
tration can also be improved through this research.16 

Nanoparticles can be engineered to permeate the 
blood–brain barrier, delivering drugs to treat neuro-
degenerative diseases.17

Vaccine stabilization Nanoassemblies can be used 
to stabilize certain types of vaccines, notably mRNA 
vaccines, by encapsulating them.18 In this form, it is 
easier to inject the vaccine into the human body and 
to release it over time inside the body in a controlled 
manner. 

Smart windows Silver nanowires arranged into a 
thin film on a window become a transparent conduc-
tive film rather than the familiar reflective mirror from 
silver behind the window. Running a current through 
the film can then change the opacity of the window 
electrically.19

2-D semiconductors, graphene, carbon nano-
tubes, and nanoscale materials These are at the 
forefront of the next generation of high-tech elec-
tronic devices. Active research efforts are dedicated 
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to designing new methods to integrate 2-D or carbon 
nanotube semiconductors into electronics that are 
currently silicon based to increase their energy effi-
ciency and heat management.20

Higher-capacity batteries High-performance lith-
ium battery anodes have been developed by inte-
grating silicon nanowires as an anode material. When 
bulk silicon is used as an anode, it undergoes sig-
nificant changes in volume as the battery charges 
and discharges, often leading to mechanical failure. 
Use of silicon nanowires bypasses this problem and 
increases battery capacity by a factor of ten.21

Catalysis Catalysts are used to accelerate chemical 
reactions, and nanomaterials are well suited for this 
role.22 Nanoparticles are particularly well suited for 
this task, as they contain a high number of active sites 
per unit mass and can be chemically architected to 
catalyze various chemical reactions. Advances have 
been made in converting CO2 to value-added chem-
icals using electrified nanoparticle catalysts and in 
employing palladium catalysts for the combustion of 
methane, which could improve the efficiency of elec-
tricity generation from methane.23 Nanocatalysts have 
also been used to improve the rate at which hydrogen 
can be produced from water through electrolysis.24 
The challenges include developing catalysts that are 
sufficiently active, stable, and low in cost to produce 
hydrogen in large quantities and inexpensively.25

Over the Horizon
Impact of New Technologies

LOW-CARBON STEEL AND  
CEMENT PRODUCTION

As an example of how materials science could have 
impact on a large scale, note that steel and con-
crete are critical building materials. World produc-
tion of concrete is some 30 billion tons per year. For 

comparison, the weight of all the concrete in New 
York City is around 750 million tons, according to the 
US Geological Survey.26 The Hoover Dam involves 
about 10 million tons of concrete.

Cement production is an extremely carbon-intensive 
activity, contributing to 8 percent of CO2 emissions. 
Limestone is burned to produce lime, thereby releas-
ing CO2. A number of approaches have potential for 
reducing the CO2 footprint of cement production. 
One focuses on using different material inputs in 
the production process that release less CO2. These 
inputs are the basis for “supplementary cementi-
tious materials,” which are formulated differently 
than traditional Portland cement but nevertheless 
can substitute for Portland cement in many cases. 
Another approach incorporates captured CO2 into 
concrete during the curing process.27

These techniques are all well proven, but further 
research is needed to make them economically com-
petitive with traditional CO2-intensive methods of 
production.

THE APPLICATION OF AI TO  
MATERIALS SCIENCE 

An interesting topic today is whether AI machine 
learning and modeling will be useful in predicting 
properties of new materials based on what is known 
about existing materials.28 Success has been seen with 
less complicated materials, but much is to be done 
and more data are needed for complex materials.

Challenges of Innovation and 
Implementation

The materials science research infrastructure does not 
adequately support the transition from research to 
real-world applications at scale. Such transitions gen-
erally require construction of a small-scale pilot proj-
ect to demonstrate feasibility of potential large-scale 
manufacturing. At this point, the technology is too 
mature to qualify for most research funding—because 
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the basic science questions do not address issues 
related to scaling up—but not mature enough to 
be commercialized into actual companies. Neither 
government nor venture capital investors are partic-
ularly enthusiastic about funding pilot projects, so 
different forms of funding are required to bridge this 
gap between bench-scale research and company- 
level investment. The support could even go one 
step further and establish national rapid prototyping 
centers, where academic researchers find the help 
and tools necessary to build prototypes and pilot 
plants for their technology. 

Research processes born in the past are also ill suited 
to the rapid transitions to real-world application. 
Such processes emphasize sequential steps. The 
standard process has been to characterize a mate-
rial and then proceed to a simple demonstration of 
how it might be used. Today, addressing big soci-
ety challenges calls for a more scalable system-level 
approach that involves extensive rapid prototyping 
and reliable demonstrations to provide feedback on 
and fill in gaps of knowledge. 

Current infrastructure makes this difficult. For 
example, in collaborations with a medical school, 
it is often necessary to bring almost-finished prod-
ucts to clinical tests to validate the true impact of 
a new medical device. With typically less than a 
thirty-minute window to place a device on a patient 
and gather data, any malfunction, such as a sudden 
equipment failure or a loose wire, can jeopardize the 
entire experiment and potentially halt future patient 
interactions. The laboratory-assembled devices may 
not meet this standard of reliability, even if they do 
demonstrate the value of the underlying science. 

Policy, Legal, and Regulatory Issues

REGULATION OF PRODUCTS INCORPORATING 
NANOMATERIALS

As with regulation in other areas of technology, con-
cerns arise about the appropriate balance between 

promoting public safety from possible downside risks 
and the imperatives of innovation to move quickly 
and leapfrog possible competitors. In the biomedical 
space, the FDA created a Nanotechnology Regulatory 
Science Research Plan in 2013.29 Today, FDA reg-
ulation and review of nanotechnology is governed 
by Executive Order 13563.30 Outside of biomedi-
cine, regulation and infrastructure for nanomaterials 
research from the government side is largely based in 
agencies of the National Nanotechnology Initiative, 
which include the Department of Energy, the National 
Cancer Institute, the National Institutes of Health (NIH) 
more broadly, the National Institute for Standards and 
Technology (NIST) in the Department of Commerce, 
and the National Science Foundation (NSF).

TOXICITY AND ENVIRONMENTAL ISSUES

Nanoparticles raise particular concerns because their 
small size may enable them to pass through various 
biological borders such as cell membranes or the 
blood–brain barrier and could affect biological sys-
tems in harmful ways. Nanoscale particles inhaled 
into the lungs, for example, may lodge themselves 
permanently, causing severe health outcomes, 
including pulmonary inflammation, lung cancer, and 
penetration into the brain and skin.31 

Furthermore, because engineered nanoparticles are, 
by definition, new to the natural environment, they 
pose unknown dangers to humans and the envi-
ronment. There are concerns about incorporating 
nanomaterials into products that enter that environ-
ment at the end of their life cycles. As nanomaterials 
are employed in and considered for electronic and 
energy products, it is paramount that those materi-
als safely degrade or can be recycled at the end of 
a product’s life. Policy will be particularly important 
in shaping responsible end-of-life solutions for prod-
ucts incorporating nanomaterials.

FOREIGN COLLABORATION AND COMPETITION

Historically, the United States has led the world in 
nanotechnology, but the gap between the United 
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States and China has narrowed. Notably, in 2016, 
the president of the Chinese Academy of Sciences 
openly announced Beijing’s ambition to compete in 
the field of nanotechnology.32 

As great power competition intensifies, many 
researchers are concerned that fundamental research 
could now be considered export controlled. Policy 
ambiguity can inadvertently hinder innovation by 
creating obstacles for non-US researchers wish-
ing to contribute to work in the United States and 
by deterring international collaborations, allies, 
and partners who are important for advancing the 
field. In nanomaterials, for example, researchers in 
Korea are making significant strides with biomedi-
cal applications and consumer electronics. There 
is an urgent need for clarification of these policies, 
particularly delineating fundamental research and 
export-controlled research. 
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