.
AI_133px.jpg
ai
Artificial Intelligence
.
biotech
biotech
Biotechnology and Synthetic Biology
.
cryptography
crypto
Cryptography
.
Lasers
Lasers
Lasers
.
materialscience
nano
Materials Science
.
robotics
robotics
Robotics
.
semiconductor
semiconductors
Semiconductors

KEY TAKEAWAYS

•   Popular interest in neuroscience vastly exceeds the current scientific understanding of the brain, giving rise to overhyped claims in the public domain that revolutionary advances are just around the corner. 

•   Advances in computing have led to progress in several areas, including understanding and treating addiction and neurodegenerative diseases, and designing brain-machine interfaces. 

•   American leadership is essential for establishing and upholding global norms about ethics and human subjects research in neuroscience. 

Icons_card_Neuro.png

Overview

NEUROENGINEERING
 

A brain-machine interface is a device that maps neural impulses from the brain to a computer and vice versa. There are many potential applications for this technology: sensory replacement or augmentation, replacement of severed limbs, direct mind-to-computer interfacing, or even computer assisted memory recall and cognition. For example, for people with incurable blindness, brain-machine interfaces could allow for video captured from a digital camera to be interpreted by the brain, allowing them to “see” again. However, despite headlines about mind-reading chip implants, there are still exceptionally few areas of the brain for which we have the necessary theoretical understanding of how neurocircuits work. We also have not solved technical problems related to safely implanting electrodes in the brain.

NEUROHEALTH
 

Neurodegeneration is a major challenge as humans continue to live longer. In the United States alone, the annual cost of Alzheimer’s treatment is projected to explode from $305 billion today to $1 trillion by 2050. While current treatments for Alzheimer’s are less effective than would be desired given decades of research, there is reason for cautious optimism in the coming years. Gene therapy drugs, which target genes that cause Alzheimer’s, have recently entered clinical trials. Powerful diagnostic tools like PET scans for early detection and advances in personalized medicine also leave clinicians hopeful. 

NEURODISCOVERY
 

Understanding the science of the brain might also reveal the neural basis of addiction and chronic pain, which would be helpful in tackling the opioid epidemic. Identifying the neural basis of chronic pain will allow for new preventative therapies which would alleviate a significant driver of opioid use. Neuroscience is also identifying brain mechanisms involved in relapse. This is potentially useful in both finding effective treatments and identifying individuals who are more likely to relapse and are in greater need of these therapies. 

Over the Horizon

Neuroscience applications like artificial retinas and antiaddiction drugs have a dual-pronged nature. First, the relevant brain circuits and mechanisms of function must be identified via basic research. Second, those circuits must be safely stimulated via engineering and biotech solutions. Academia is much better suited than industry to solving basic biological questions in neuroscience. However, once the basic science has been developed and a research area approaches an economically viable application, industry does a much better job. Consequently, smoothing out the friction involved in moving from academia to industry is crucial to overcoming roadblocks in development. Incubators and accelerators can help transition the findings of basic research to application by aiding in high-throughput screening—the use of automated equipment to rapidly test samples—and prototyping.

Neuroscience research naturally raises several ethical concerns. Chief among them is human subjects research. Many existing frameworks and regulations guide neuroscience research in American academia today. However, ethical guidelines are usually national, not international, and thus managing differences in research regimes will be critical to harnessing the power of international collaboration. 

POLICY, LEGAL & REGULATORY ISSUES

  • Science fiction and fantastical headlines fuel belief that mind-reading technologies and other dystopias are imminent. The reality is that work to understand the human brain remains in its early stages. This vast gap between expectations and scientific reality leaves many open to dubious proclamations and pseudoscience. 
  • Over the past decade, much of the work described earlier has been funded by the United States government through the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. However, the initiative’s budget was cut by 40 percent in 2024, from $680 million to $402 million. Without additional financial support, neuroscience research in the US will decline just as other countries are investing more in the field. 
  • Neuroscience naturally raises many ethical concerns that merit careful, ongoing discussion and monitoring. Chief among these is research on human subjects. Ethical guidelines governing such research are usually national, not international. Managing differences in research regimes will be critical to harnessing the power of international collaboration.

Report Preview: Neuroscience

Faculty Council Advisor

Kang Shen
Kang Shen
Author
Kang Shen

Kang Shen is the Frank Lee and Carol Hall Professor of biology and professor of pathology at Stanford University, where he serves as the Vincent V. C. Woo Director of the Wu Tsai Neurosciences Institute and affiliated faculty at Stanford Bio-X. His research focuses on neuronal cell biology and developmental neuroscience. He has authored or coauthored more than one hundred journal articles. He received his PhD in cell biology from Duke University.

View Bio
Kang Shen
Kang Shen

Kang Shen is the Frank Lee and Carol Hall Professor of biology and professor of pathology at Stanford University, where he serves as the Vincent V. C. Woo Director of the Wu Tsai Neurosciences Institute and affiliated faculty at Stanford Bio-X. His research focuses on neuronal cell biology and developmental neuroscience. He has authored or coauthored more than one hundred journal articles. He received his PhD in cell biology from Duke University.

Access the Complete Report

Read the complete report.

Explore

Date Range
CONTENT TYPE

Select Content Type

  • News
  • Article
  • Videos
  • Podcasts
  • Events
AUTHORS

Select Author

  • Condoleezza Rice
  • John Taylor
  • Jennifer Widom
  • Amy Zegart
  • Herbert Lin
  • Hon. Jerry McNerney
  • Hon. Robert Gates
  • Hon. Steven Chu
  • Hon. Susan M. Gordon
  • John Hennessy
  • Lloyd B. Minor
  • Mary Meeker
  • Peter Scher
  • Thomas M. Siebel
  • Zhenan Bao
  • Dan Boneh
  • Yi Cui
  • Simone D’Amico
  • Drew Endy
  • Siegfried Glenzer
  • Mark A. Horowitz
  • Fei-Fei Li
  • Allison Okamura
  • Kang Shen
  • Eric Schmidt
  • Steven Koonin
  • Sally Benson
  • Norbert Holtkamp
  • Martin Giles
FOCUS AREAS

Neuroscience

  • Artificial Intelligence
  • Biotechnology and Synthetic Biology
  • Sustainable Energy Technologies
  • Cryptography
  • Materials Science
  • Neuroscience
  • Nuclear Technologies
  • Robotics
  • Semiconductors
  • Space
  • Technology Test Page
  • Lasers
  • Artificial Intelligence
  • Biotechnology and Synthetic Biology
  • Cryptography
  • Materials Science
  • Neuroscience
  • Robotics
  • Semiconductors
  • Sustainable Energy Technologies
  • Space
Date (field_date)
Read More
Stanford and Hoover Institution contributors to the Stanford Emerging Technology Review are seen on Capitol Hill on February 25, 2025. (DMV Productions)
News
Books
Stanford Emerging Technology Review Highlights Promise and Risk of Frontier Tech to Washington, DC Policymakers

Contributors to the 2025 edition of the Stanford Emerging Technology Review brought its findings to America’s capital on February 25, with the challenge and promise presented by frontier technologies now clearer than ever before.

March 11, 2025
Read More
SETR 2025 Cover
News
Books
Stanford Emerging Technology Review Offers Policymakers New Insights

The 2025 edition of the Stanford Emerging Technology Review (SETR) report is now available, offering American policymakers a comprehensive overview of how ten frontier technologies, from artificial intelligence to robotics, are transforming the world.

February 24, 2025
Read More
DeepSeek logo in front of a Chinese flag
Article
Books
How Disruptive Is DeepSeek? Stanford HAI Faculty Discuss China’s New Model

Experts weigh in on the implications of DeepSeek’s open-source model and its impact on technology, geopolitics, the arts, and more.

February 13, 2025 by Amy Zegart
Read More
The Interconnect Logo
News
Books
CFR and the Stanford Emerging Technology Review Launch New Podcast Series on Frontier Technologies

Frontier technologies are transforming international relations and the U.S. economy. As a result, more bridges between science and engineering labs, Washington, DC, and the world of business are needed. The Hoover Institution and Stanford University’s School…

February 12, 2025
Read More
SETR in DC | Feb. 25, 2025
Events
Books
The Stanford Emerging Technology Review 2025: Frontier Tech For A New Geopolitical Era

The Hoover Institution and the School of Engineering at Stanford University invite you to a panel discussion for the launch of the Stanford Emerging Technology Review 2025 report in Washington, DC.

Read More
Hoover Institution fellow Drew Endy testifies before the US-China Economic and Security Review Commission at a hearing on "Made in China 2025—Who Is Winning?"
News
Books
Drew Endy: Made In China 2025—Who Is Winning?

Hoover Institution fellow Drew Endy testifies before the US-China Economic and Security Review Commission at a hearing on "Made in China 2025—Who Is Winning?"

February 06, 2025 by Drew Endy
Read More
Bio-Strategies and Leadership Holds Inaugural Congressional Fellowship Program on Biotechnology Strategy
Events
Books
Bio-Strategies and Leadership Holds Inaugural Congressional Fellowship Program on Biotechnology Strategy

Drew Endy, a Hoover science fellow and senior fellow and Martin Family University Fellow in Undergraduate Education (Bioengineering) at Stanford University, convened nearly two dozen Hoover and Stanford experts, policymakers, and business leaders earlier this…

October 18, 2024
Read More
Tech Track II 2024
Events
Books
Government Officials, Hoover Fellows, and Silicon Valley Leaders Discuss Cooperation at Sixth Annual Tech Track II Symposium

Fifty US government officials, scholars from the Hoover Institution, Stanford University scientists and engineers, technology experts, venture capitalists, and business leaders convened at the Sixth Annual Tech Track II Symposium hosted by the Hoover…

December 16, 2024
Read More
Drone
Article
Books
Technology Applications By Policy Area

This chapter explores applications from each of the ten technology fields described in the report as they may relate to five important policy themes: economic growth, national security, environmental and energy sustainability, health and medicine, and civil…

February 07, 2025
Read More
Globe
Article
Books
Cross-Cutting Themes

One of the most important and unusual hallmarks of this moment is convergence: emerging technologies are intersecting and interacting in a host of ways, with important implications for policy. This chapter identifies themes and commonalities that cut across…

February 07, 2025

You May Also Like

.
Stanford and Hoover Institution contributors to the Stanford Emerging Technology Review are seen on Capitol Hill on February 25, 2025. (DMV Productions)
Stanford Emerging Technology Review Highlights Promise and Risk of Frontier Tech to Washington, DC Policymakers
.
SETR 2025 Cover
Stanford Emerging Technology Review Offers Policymakers New Insights
.
The Interconnect Logo
CFR and the Stanford Emerging Technology Review Launch New Podcast Series on Frontier Technologies
overlay image