.
AI_133px.jpg
ai
Artificial Intelligence
.
cryptography
crypto
Cryptography
.
materialscience
nano
Materials Science
.
neuroscience
neuroscience
Neuroscience
.
nuclear
nuclear
Nuclear Technologies
.
robotics
robotics
Robotics
.
semiconductor
semiconductors
Semiconductors
.
space
space
Space
.
Sustainable-Energy-Technologies_133px.jpg
energy
Sustainable Energy Technologies

KEY TAKEAWAYS

•   Biotechnology is burgeoning, contributing around 5 percent to the US GDP with a historical doubling time of about seven years. 

•   Synthetic biology is third-generation biotechnology, complementing domestication and breeding (the first generation) and gene editing (the second generation).

•   The United States is struggling to grasp the scale of the bio-opportunity, the strategic ramifications unique to network-enabled biotechnologies, and the possibilities and perils of distributed biomanufacturing.

Icons_card_Biotech.png

Overview

Biotechnology creates products or services in partnership with biology. For example, skin microbes can be engineered to combat skin cancer and essential medicines can be brewed from yeast at industrial scales. Biotechnology, already a huge industry—5 percent of GDP— is expected to grow greatly. Synthetic biology, a subset of biotechnology, builds on genetic engineering to focus on improving the composition and functions of living systems. DNA sequencing and synthesis are two fundamental technologies underlying synthetic biology. DNA sequencers are machines that read or decode specific DNA molecules, while synthesizers write user-specified sequences of DNA. The cost of sequencing a human genome has fallen from $10,000 to around $600 in the last decade, while the cost of gene synthesis dropped from $4/base (2003) to $0.04/base (2023).

 

Key Developments

Synthetic biology has applications in medicine, agriculture, manufacturing, and sustainability. DNA and RNA synthesis underlie all mRNA vaccines, including those for COVID-19. Synthetic biology can also cultivate drought-resistant crops and enable cells to be programmed to manufacture medicines or fuel on an agile, distributed basis. 

The “superpower” of the internet—the ability to rapidly move information—can amplify the “superpower” of biology: the ability to grow and assemble complex objects locally. For example, DNA sequencers and synthesizers connected to the internet could routinely allow researchers to distribute vaccines against viruses around the world faster than a pandemic can spread. Developed wisely, such capabilities could lead to biodefense and public health systems operating at light speed. Ignored or mismanaged, such capabilities could result in widespread access to bioterror capabilities or worse. Artificial intelligence will likely supercharge synthetic biology, starting with molecular, pathway, and cellular design.

Over the Horizon

For biology to develop fully as a technology, careful attention and sustained support for improving the methods underlying biotechnology overall are essential. Whoever develops the tools for measuring, modeling, and making with biology has a chance of being world leading. Whoever first unlocks routinization and coordination of labor in biotechnology workflows and commercialization will cement their leadership. Careful consideration of such needs and opportunities reveals gaps in the nation’s portfolio (e.g., the National Institute of Standards and Technology should be resourced to develop and advance standards and reference materials undergirding a networked bioeconomy). 

The building blocks for a federal strategic vision released in 2022 (including the National Engineering Biology Research and Development Initiative, National Biotechnology and Biomanufacturing Initiative, National Security Memorandum 15, and National Security Commission on Emerging Biotechnology) tend to focus on applications and outcomes. Yet each offers important openings for creating support for foundational bioengineering research; these opportunities must be seized via active multilateral efforts to provide advice and input. The recently launched Global Forum on Technology at the Organisation for Economic Co-operation and Development (OECD) offers an important additional platform for coordination among democracies.

“Patient capital,” both private and public, is crucial for foundational research, since many biotechnologies have long development scales. Such long-term capital must be sustained in times of ebb and flow in the pace of scientific advancement. Although mRNA vaccines came into widespread public knowledge in 2021, their history began thirty years ago, a history that offers humbling lessons regarding lack of vision and support among institutions and programs now happy to claim credit for success. 

From a strategic perspective, we are tracking four areas of significant consequence and opportunity: 
(1) progress toward constructing life from scratch (e.g., building a cell); 
(2) advances in electrobiosynthesis (i.e., growing biomass starting from renewable electricity and atmospheric carbon); 
(3) advances in next-generation DNA synthesis, including a potential return to desktop synthesis; and 
(4) progress toward profitability (e.g., when synthetic biology companies realize and sustain significant profits). 

 

REPORT PREVIEW: Biotechnology Synthetic Biology

Faculty Council Advisor

drew-endy_profilephoto.jpg
Drew Endy
Author
Drew Endy

Drew Endy is the Martin Family University Fellow in Undergraduate Education (bioengineering), codirector of degree programs for the Hasso Plattner Institute of Design (the d.school), core faculty at the Center for International Security and Cooperation (CISAC), and senior fellow (courtesy) of the Hoover Institution at Stanford University. He serves as president and director of the Biobricks Foundation and director of the iGEM Foundation and the Biobuilder Educational Foundation. His research focuses on the foundations of synthetic biology along with broader societal aspects. He earned a PhD in biotechnology and biochemical engineering from Dartmouth College.

View Bio
drew-endy_profilephoto.jpg
Drew Endy

Drew Endy is the Martin Family University Fellow in Undergraduate Education (bioengineering), codirector of degree programs for the Hasso Plattner Institute of Design (the d.school), core faculty at the Center for International Security and Cooperation (CISAC), and senior fellow (courtesy) of the Hoover Institution at Stanford University. He serves as president and director of the Biobricks Foundation and director of the iGEM Foundation and the Biobuilder Educational Foundation. His research focuses on the foundations of synthetic biology along with broader societal aspects. He earned a PhD in biotechnology and biochemical engineering from Dartmouth College.

Access the Complete Report

Read the complete report.

Explore

Date Range
CONTENT TYPE

Select Content Type

  • News
  • Article
  • Videos
  • Podcasts
  • Events
AUTHORS

Select Author

  • Condoleezza Rice
  • John Taylor
  • Jennifer Widom
  • Amy Zegart
  • Herbert Lin
  • Hon. Jerry McNerney
  • Hon. Robert Gates
  • Hon. Steven Chu
  • Hon. Susan M. Gordon
  • John Hennessy
  • Lloyd B. Minor
  • Mary Meeker
  • Peter Scher
  • Thomas M. Siebel
  • Zhenan Bao
  • Dan Boneh
  • Yi Cui
  • Simone D’Amico
  • Drew Endy
  • Siegfried Glenzer
  • Mark A. Horowitz
  • Fei-Fei Li
  • Allison Okamura
  • Kang Shen
  • Eric Schmidt
FOCUS AREAS

Biotechnology Synthetic Biology

  • Artificial Intelligence
  • Biotechnology Synthetic Biology
  • Sustainable Energy Technologies
  • Cryptography
  • Materials Science
  • Neuroscience
  • Nuclear Technologies
  • Robotics
  • Semiconductors
  • Space
  • Technology Test Page
Date (field_date)
Read More
Artificial Intelligence
News
Books
Stanford launches emerging-tech project co-led by Hoover Institution’s Condoleezza Rice

Former U.S. Secretary of State Condoleezza Rice is helping lead a new Stanford University initiative to provide “one-stop shopping” for government, businesses and the public to obtain timely information about new and evolving technologies.

December 08, 2023
Read More
Hoover research fellow Herbert Lin, the director and editor-in-chief of the Stanford Emerging Technology Review explains that advancements in a single field of emerging technology leads to advancements in others.
News
Books
Hoover Institution and School of Engineering launch emerging technology review

The Stanford Emerging Technology Review (SETR), a “one-stop-shopping primer” for policymakers on advancements in 10 key emerging technology areas, launched its first report in November.

December 08, 2023
Read More
SETR_SplashScreen_705px.jpg
News
Books
Introducing the Stanford Emerging Technology Review featuring Condoleezza Rice and Jennifer Widom

Introducing the Stanford Emerging Technology Review, an innovative project and publication dedicated to exploring the breakthroughs and policy implications of cutting-edge technologies that are shaping our societies and economies.In this video, the Review’s…

December 05, 2023 by Condoleezza Rice, Jennifer Widom
Read More
Solar
Article
Books
Yi Cui to lead Sustainability Accelerator; Roland Horne named interim Precourt Institute director

Cui has been leading both the Sustainability Accelerator and the Precourt Institute for Energy since April. With Horne transitioning to interim director of the Precourt Institute, Cui will continue engaging with the accelerator’s efforts to generate…

November 10, 2023 by Yi Cui
Read More
Science
Article
Books
Stanford professors promote bio-literacy through digital education

Drew Endy and Jenn Brophy take a step toward educating the world about bioengineering with a course offered to high school students nationwide.

September 27, 2023 by Drew Endy
Read More
AI Robot
Article
Books
Stanford AI professor Fei-Fei Li says we need more human-centered technology. Still, she had to convince herself to share her own story

A human story. Stanford professor Fei-Fei Li is an AI technologist known for her work to make the fast-moving technology more human, a crusade she launched via a widely-read 2018 New York Times op-ed. When she started to write a book, she focused on that work—…

November 15, 2023 by Fei-Fei Li
Read More
Robot
Article
Books
AI is at an inflection point, Fei-Fei Li says

The renowned AI researcher shares her thoughts on the hard problems that lie ahead for the field.

November 14, 2023 by Fei-Fei Li
Read More
Artificial Intelligence
Article
Books
Fei-Fei Li Started an AI Revolution by Seeing Like an Algorithm

Researcher Fei-Fei Li’s ImageNet project provided the feedstock for the deep learning boom that brought the world ChatGPT and other world-changing AI systems.

November 10, 2023 by Fei-Fei Li
Read More
Artificial intelligence
Article
Books
Trailblazing computer scientist Fei-Fei Li on human-centered AI

What is the boundary of the universe? What is the beginning of time?These are the questions that captivated computer scientist Fei-Fei Li as a budding physicist. As she moved through her studies, she began to ask new questions — ones about human and machine…

November 10, 2023 by Fei-Fei Li
Read More
SETR | November 14, 2023
News
Books
Stanford Emerging Technology Review Launches with Public Event Featuring Leading University Officials and Tech Experts

Hoover Institution (Stanford, CA) – The Stanford Emerging Technology Review, an ambitious university-wide initiative dedicated to fostering a greater understanding among policymakers, industry leaders, and the attentive public about the breakthroughs and…

November 15, 2023

You May Also Like

.
Artificial Intelligence
Stanford aims to help policy makers prepare for AI, robotics and more
.
Artificial Intelligence
Stanford launches emerging-tech project co-led by Hoover Institution’s Condoleezza Rice
.
Hoover research fellow Herbert Lin, the director and editor-in-chief of the Stanford Emerging Technology Review explains that advancements in a single field of emerging technology leads to advancements in others.
Hoover Institution and School of Engineering launch emerging technology review
.
Science
Stanford professors promote bio-literacy through digital education
.
Drone
Technology Applications By Policy Area
.
Globe
Cross-Cutting Themes
.
Stanford
Executive Summary
.
Binary
Foreword
overlay image